
J O H A N N E S K E P L E R
U N I V E R S I T Ä T L I N Z

N e t z w e r k f ü r F o r s c h u n g , L e h r e u n d P r a x i s

Hardening MySQL on POSIX compatible
systems

Seminararbeit

Netzwerke und Sicherheit

LVA-Nummer: 351.094, WS2007

Angefertigt am Institut für Anwendungsorientierte Wissensverarbeitung

Betreuung:

a. Univ.-Prof. Dr. Josef Küng

Eingereicht von:

Sonnleitner Erik

Linz, December 2007

Johannes Kepler Universität
A-4040 Linz · Altenbergerstraße 69 · Internet: http://www.uni-linz.ac.at · DVR 0093696

Contents

Contents

1 Introduction 3

2 Hardening the Unix environment 4

2.1 Filesystem access restrictions and Access Control Lists 4

2.2 Designing a chroot-jail . 7

2.3 Modern virtualization approaches . 9

3 Cryptographic appliances 9

3.1 Encrypting network traffic . 9

3.1.1 Using OpenSSL . 10

3.1.2 Using OpenSSH . 12

3.2 Encrypting databases on filesystem level 14

4 Protection against stack-smashing attacks 15

5 Security related configuration attributes 18

6 Access control and privilege management 19

6.1 General management table structures 19

6.2 Access management via SQL . 22

6.3 Setting up connection limits . 23

7 Conclusion 24

References 25

Erik Sonnleitner Seite 2

1 Introduction

Abstract

This paper describes how to secure a POSIX compliant environment through

setting up filesystem access restrictions and access control lists, designing

chroot sandboxes for peuso-virtualization, make use of strong cryptography

on network- and filesystem level, as well as protecting MySQL from exploitable

buffer overflows. After ensuring operating system secureness, I’ll discuss some

security related configuration attributes of the database server, before going

into detail of the internal privilege management of the DBMS.

1 Introduction

The enormous global increase of information which is to be stored, forces certain

approaches of archiving and restoring data, while keeping track of numerous valuable

and essential preconditions, e. g. data integrity.

Relational databases are still the common way of accomplishing the storage of masses

of information, although its conceptional basics reach back to 1970, where E. F. Codd

firstly introduced this method of data handling [Cod70].

As global networking dramatically increased the past decades, the TCP/IP protocol

stack has become very popular and nowadays builds the fundamental backbone of the

Internet. As conclusion to this tendency, also the way of controlling and operating

relational database systems mostly relies on the mentioned protocol suites, with all

advantages and disadvantages, inherently given by using them.

Accessability and reliability of information services is often constrained by providing

them over the Internet, which should be seen as naturally untrusted and insecure

network, since not only permitted persons are able to try to establish connections.

With the aspect of Unix-like system environments in mind, I’ll figure out how to se-

cure and harden database systems primarily on Linux, taking MySQL 5 as example,

since this software is commonly used and widespread, especially over the Internet,

for it is Open Source Software. Except for the description of filesystem encryption,

all examples should work also on other POSIX compliant operating systems than

Linux.

The language of given sourcecodes should be clear from the context they are men-

tioned. However, shell scripts are written using the Bourne Again Shell (/bin/bash),

Erik Sonnleitner Seite 3

2 Hardening the Unix environment

and most sources are plain C. When shell command examples are given, every line

is prefixed with either # or $. While the hash indicates that the following statement

has to be called as root user, the dollarsign commands doesn’t need administrative

permissions.

2 Hardening the Unix environment

Common Unix-like systems offer a wide range of security related tools and methods

for obtaining access restrictions. The configuration of certain software packages like

databases is assuredly to be done carefully and with respect to secureness. Nev-

ertheless, a system-wide security model for protecting information and information

services should begin (at least) at operating system level.

A perfectly configured Oracle Database Server, including DMBS account and role

management etc., won’t be useful if everybody may be able to simply copy the raw

data from the filesystem for obtaining the desired information quickly and easily.

For more in-depth information about Unix and the Unix system environment, I’d

refer to [SWF05], [Amb07] and [Bau02].

2.1 Filesystem access restrictions and Access Control Lists

Most suitable filesytems available on POSIX environments provide mechanisms of

restricing methods of access in an abrasive way, using (at least) three types of access

mode codes, and three ways of describing for whom those modes apply.

The basic filesystem rights are

• read (→ ’r’)

• write (→ ’w’), and

• execute (→ ’x’)

which can be individually referred to

• the user which is the owner of the filesystem object, e.g. a file or a directory
(→ ’u’),

Erik Sonnleitner Seite 4

2 Hardening the Unix environment

• the group of persons which belong to the (main) group of the owner (→ ’g’),
and

• all others (→ ’o’).

Taking the major configuration file of MySQL, which is normally found at /etc/mysql/my.cnf,

the filesystem rights are given as following:

$ ls -lh /etc/mysql/my.cnf

-rw-r--r-- 1 root root 3.7K 2007-07-18 00:14 /etc/mysql/my.cnf

The access rights are shown in the string -rw-r--r--. Disregarding the first -

character, Unix returns basically a nine-character string, which is to be read in

triples, as rw-|r--|r--. The first triple describes the permissions of the owner, the

second the permissions of the owner’s group and the third triple refers to all other

users. Therefore, only the owner of the file (the root user, the administrator) is

allowed to modify the file because of the write permission – users in the same group

as well as all other system users may only read the object.

The upcoming columns, both entitled as root describe the owner of the object, and

group membership belonging of the object. As we see, the my.cnf file is owned by

the user root and belongs to the system group root.

The configuration files should always belong to the root user, and only permit root

to write on these objects, since nobody else should be able to modify its contents in

any way. The right permission settings may be assured by

chown -R root:root /etc/mysql/

chmod 0644 /etc/mysql/my.cnf

In dependency on what other configuration files MySQL actually is referring to,

the chmod command may also be applied to other items inside the /etc/mysql/

directory.

Storage data MySQL stores the actual data (tables, etc.) in /var/lib/mysql

or $MYSQL/data by default. In contrast to the configuration files, the data storage

files should not be owned by the administrator, but by a completely unprivileged

user, normally called mysql, which isn’t allowed to to anything else inside the Unix

Erik Sonnleitner Seite 5

2 Hardening the Unix environment

system as what is absolutely necessary. Besides the administrator of course, nobody

should be able to read and/or modify these objects, therefore we completely revoke

any rights of the others user section and just let mysql read and write.

Moreover, the mysql user should by no means be able to invoke a command shell.

This assures that crackers arn’t be able to login at the server system, even if this

user has been hacked. Revoking command shells is done within /etc/passwd, by

changing the last column of the mysql user from /bin/bash to /bin/false. The

program given here will be invoked when a user has been successfully authenticated

by the system.

Logfiles MySQL commonly logs every event, relevant to the database. Absolutely

no other users than root and mysql should be able to read or write the logs, prevent-

ing the leaking of information out of the logfiles. For example, certain queries like

GRANT may offer sensitive information like user passwords, which are stored plain-

text inside the protocol files. The logs are normally owned by the mysql user, since

MySQL needs to write the events here (in contraty to the configuration files, only

the administrator should be able to modify, not the MySQL system).

Access control lists ACLs, or Access control lists offer a very granular method

of defining and granting permissions. As opposed to the standard Unix filesystem

rights, POSIX ACLs are not built-in in the filesystem device driver (as done in

ext2/3, reiserfs, xfs, etc.).

The usage of ACLs offers mechanisms for setting up per-user-permissions of single

filesystem objects and therefore provide fine-grained definitions of access restrictions,

if needed. The corresponding POSIX commands are getfacl for viewing ACLs,

and setfacl for setting up an ACL. These features may be useful to add certain

permissions to other users (e. g. automatic logfile analyzers). The following example

quickly shows the usage of setfacl, allowing the user syslog to write on the MySQL

log files:

1 # setfacl -m user:syslog:-w- /var/log/mysql/*

Erik Sonnleitner Seite 6

2 Hardening the Unix environment

2.2 Designing a chroot-jail

Even when accurately managing user- and group-memberships as well as read and

write permissions to the relevant MySQL filesystem objects, we should assure, that,

in case of a successful attack, the system environment does not get compromised in

any way. Numerous attacks have been reported on this topic. When talking about

attacks, we now commonly mean attacks from within the database system, when

users or programs try to gain sensitive system parameters like the /etc/shadow file

or logfiles via outfoxing the DMBS.

That’s why we need to create a sandbox-like environment where MySQL runs within

and is restricted to. In terms of POSIX systems, this is called a change root-

environment, or chroot-jail named by the corresponding command chroot. In the

early Eighties when nowadays keywords like virtualization havn’t been born, Bill Joy

introduced the concept of the chroot command which can be seen as forerunner of

an virtual system environment.

chroot basically repositions the global root directory (/) via remapping it into

a specific directory of any directory within the filesystem tree. Any commands,

applications, users etc. which act within the chroot-environment actually don’t

know that they are working in a sandbox and should have no chance for accessing

any part of the filesystem outside the jailed area.

Designing the sandbox Since the jailed environment won’t be able to access the

rest of the filesystem, all relevant system objects like binaries, libraries, the directory

structure, logs, etc. have to be copied into the sandbox.

The easiest way to accomplish this, is to get an official static build of MySQL, which

doesn’t mandatorily rely on external dymanic libraries (shared objects, respectively)

and defines the right directory structure. The first step is to download and unpack

the package, as shown here by example of MySQL 5.0.45:

1 $ export MYSQL_CHROOT =/ chroot/mysql

2 # mkdir -p $MYSQL_CHROOT

3 # cd $MYSQL_CHROOT

4 $ wget http:// $SERVER/mysql -5.0.45 - linux -i686.tar.gz

5 $ tar xfz mysql -5.0.45 - linux -i686.tar.gz

6 $ MYSQL_CHROOT=$MYSQL_CHROOT/mysql -5.0.45 - linux -i686

7 $ cd $MYSQL_CHROOT

Erik Sonnleitner Seite 7

2 Hardening the Unix environment

We have now prepared a basically functional MySQL environment. Nevertheless, we

want to have at least a working shell, as well as some system-wide configuration files

needed by MySQL. Therefore we need to copy /bin/bash to the sandbox. Since

the Linux Bash also depends on certain libraries, it’s necessary to find out which

libraries are needed, using the ldd command:

1 $ ldd /bin/bash

2 linux -gate.so.1 => (0 xffffe000)

3 libncurses.so.5 => /lib/libncurses.so.5 (0 xb7f8f000)

4 libdl.so.2 => /lib/i686/cmov/libdl.so.2 (0 xb7f8b000)

5 libc.so.6 => /lib/i686/cmov/libc.so.6 (0 xb7e42000)

6 /lib/ld-linux.so.2 (0 xb7fd9000)

Now we’ll just need to copy the given objects in the corresponding directories of the

sandbox. This can be done manually file by file, or simply with the following piece

of code:

1 $ for i in ‘ldd /bin/bash | awk ’{print $3}’ | egrep ’^/.*’‘; do

2 mkdir -p "./‘dirname $i‘";

3 cp $i ./‘dirname $i ‘;

4 done

5 cp /bin/bash ./bin

Since MySQL also uses some shell scripts, it will also need the following files:

1 $ for i in /bin/hostname /bin/chown /bin/chmod /bin/touch

2 /bin/date /bin/rm /usr/bin/tee /usr/bin/dirname

3 /etc/passwd /etc/group /lib/librt.so.1 /lib/libthread.so.0; do

4 mkdir -p "./‘dirname $i‘";

5 cp $i ./‘dirname $i ‘;

6 done

We can now initially start the MySQL Server inside the chroot-environment by

calling:

1 # chroot $MYSQL_CHROOT /bin/mysqld_safe

The chroot command now repositions the global root node / for the command

mysqld_safe. If an attacker forces to gain access of the system behind the database

server, he’s limited to MySQL’s root directroy, which is represented by the $MYSQL_CHROOT

environment variable, and pointing to /chroot/mysql of the real filesystem behind

the sandbox.

Erik Sonnleitner Seite 8

3 Cryptographic appliances

2.3 Modern virtualization approaches

Since chroot can be seen as an old-school pseudo-virtualisation, just keeping the

MySQL server in a sandbox of an existing system, modern approaches have shown

that virtualization and para-virtualization are leading the way of running multiple

operating system kernels on one machine.

Therefore, there is no need of creating a sandbox, since every server-system may

run in a completely isolated full featured Unix system, while all of these (virtual)

servers are run on one single physical server.

The most common ways of aquiring an virtual server environment are currently the

open-source project Xen as well as the comparable closed-source software VMWare

ESX Server. Basically, those projects provide a so called Hypervisor, which can

be seen as an additional abstraction layer, between the system’s hardware and the

operating sytstem’s kernels. The hypervisor manages to devide the system resources

by the running kernels, independent on which operating systems are used above the

hypervisor, without producing much overhead in comparison to natively running the

virtualized operating systems.

Since the installation of MySQL on a virtual server is done exactly like a normal

installation, I won’t provide more information on this topic within this paper, but

I’d refer to [SBZD07].

Another way of performing system restrictions are security suites like the NSA

SELinux, as well as Novell AppArmor. Those applications aim to spy and re-

strict the behaviour of certain programs and what they are trying to perform on

the filesystem as well as via system calls.

3 Cryptographic appliances

3.1 Encrypting network traffic

For encrypting network traffic, there are several differnet ways. One may use

• OpenSSL,

• OpenSSH tunneling, or

Erik Sonnleitner Seite 9

3 Cryptographic appliances

• OpenVPN tunneling

All cryptographic implementations are available for every platform MySQL is capa-

ble of, and all three use strong encryption. Using OpenSSL deserves some MySQL

internal configuration, and is based on certificates. This may be a good choice if

there already is a public-key-infrastructure (PKI) available.

OpenVPN provides a link between two trusted private networks, over an untrusted

(mostly non-private) network (normally the Internet). This needs an OpenVPN

gateway server, which should commonly not be run on the same machine as the

MySQL daemon does due to security reasons. Setting up an VPN tunnel is normally

done to encrypt the whole network traffic between two parties, and deserves deeper

knowledge of configuring a VPN gateway. Therefore, I won’t provide information

on this variant, which can be obtained from [BLTR06].

An OpenSSH tunnel is easy to setup and maintain, as well as secure and well-known

to most Unix users.

3.1.1 Using OpenSSL

For using OpenSSL encryption, the MySQL server has to be capable of understand-

ing OpenSSL. Most standard MySQL packages of the common Linux distributions

already offer OpenSSL-enabled MySQL services out of the box. If not, you may

compile the sources of MySQL manually and run the configure script with the

option --with-vio --with-openssl. OpenSSL activation forces the environment

variable have_openssl to be set to YES. This can be checked by

1 mysql > SHOW VARIABLES LIKE ’%openssl%’;

2 +---------------+-------+

3 | Variable_name | Value |

4 +---------------+-------+

5 | have_openssl | YES |

6 +---------------+-------+

Since the OpenSSL encryption implementation of MySQL sustains upon certificates,

we need to create

1. a Certificate Authority (CA) key and certificate,

2. a server encryption key, as well es a server certificate request

Erik Sonnleitner Seite 10

3 Cryptographic appliances

3. a client encryption key, as well as a client certificate request

The following shellscript will do this for us (OpenSSL binaries have to be installed):

1 #!/bin/bash
2 DIR=‘pwd ‘/ openssl
3 PRIV=$DIR/private
4

5 mkdir $DIR $PRIV $DIR/newcerts
6 cp /usr/lib/ssl/openssl.cnf $DIR
7 replace ./ demoCA $DIR -- $DIR/openssl.cnf
8

9 openssl req -new -x509 -keyout $PRIV/cakey.pem -out $DIR/cacert.pem
10 -config $DIR/openssl.cnf
11

12 openssl req -new -keyout $DIR/server -key.pem -out $DIR/server -req.pem
13 -days 3600 -config $DIR/openssl.cnf
14

15 # openssl rsa -in $DIR/server -key.pem -out $DIR/server -key.pem
16

17 openssl ca -policy policy_anything -out $DIR/server -cert.pem
18 -config $DIR/openssl.cnf -infiles $DIR/server -req.pem
19

20 openssl req -new -keyout $DIR/client -key.pem -out $DIR/client -req.pem
21 -days 3600 -config $DIR/openssl.cnf
22

23 # openssl rsa -in $DIR/client -key.pem -out $DIR/client -key.pem
24

25 openssl ca -policy policy_anything -out $DIR/client -cert.pem
26 -config $DIR/openssl.cnf -infiles $DIR/client -req.pem

Lines 1 - 6 create a useable directory structure for storing the resulting keys and

certificates. Be sure to call this script from a safe location; keys are normally stored

in /etc/mysql/keys or something similar.

Line 8 and 9 generate a local Certificate Authority for signing the certificates which

are to be created.

Lines 11 and 12 create an encryption key for the MySQL server and a certificate

request, which is to be signed afterwards. The certificate will be valid for 3600 days.

Line 14 is optional and would remove the passphrase from the server key. This

means that it’s not necessary to give the passphrase every time the MySQL server

is restartet. This behaviour may be seen as security risk, depending on where the

(unencrypted) key will be stored.

Erik Sonnleitner Seite 11

3 Cryptographic appliances

Lines 16 and 17 will sign the previously generated server certificate with our local

CA instance.

Lines 19 and 20 create a client key and certificate request.

Line 22 is optional, see Line 14.

Lines 24 and 25 sign the client certificate with our local CA instance.

We finally have to tell MySQL where our encryption keys and certificates are stored,

which is done in my.cnf. We need entries for both, server and client. Note that the

client configuration as well as the client and CA certificates have to be available on

all clients who wish to encrypt MySQL related network traffic.

1 [client]

2 ssl -ca=$DIR/cacert.pem

3 ssl -cert=$DIR/client -cert.pem

4 ssl -key=$DIR/client -key.pem

5 <...>

6

7 [mysqld]

8 ssl -ca=$DIR/cacert.pem

9 ssl -cert=$DIR/server -cert.pem

10 ssl -key=$DIR/server -key.pem

11 <...>

$DIR is to be replaced by the chosen key and certificate directory.

3.1.2 Using OpenSSH

Encrypting network traffic using OpenSSH is done via tunnelling. The advantages

of this method are:

• An existing MySQL configuration has not to be altered

• There is no administrative overhead for creating and maintaining certificates

and keys

• The tunnel itself is transparant to MySQL since SSH does everything on its

own

• Easy setup

Erik Sonnleitner Seite 12

3 Cryptographic appliances

However, there are several points which may be seen as disadvantages:

• The tunnelling mechanism itself has to be done on the client(s), which leads

to decentralized administration

• The calling client(s) require to have a valid system user on the box where the

OpenSSH server is running

• The server machine must run an OpenSSH server1, the clients must have the

ssh binary installed

The basic idea is that the ssh binary on the client(s) opens a socket which is bound

to a specific port (3307 in the following example). ssh encrypts all the traffic,

coming through this port and sends it to the OpenSSH server which will perform

the decryption transparently and redirect the unecrypted traffic to the port, the

MySQL server is listening on.

The MySQL TCP connection a client tries to establish, is done to localhost instead

of the MySQL server, to the port number bound my ssh.

On the client side, the following command will set up our OpenSSH tunnel:

1 ssh -L 3307:< MySQL server address >:3306

2 <username >@<OpenSSH server address >

The clients can now connect through localhost the get in touch with the MySQL

server:

1 mysql -u <mysql_username > -p -h 127.0.0.1 -P 3307

Note: The OpenSSH server doesn’t mandatorily have to run on the same machine

as the database server does. If OpenSSH runs on server A and MySQL on server

B, we need to set up an packet redirection, which can be done using iptables on

machine A:

1 echo 1 > /proc/sys/net/ipv4/ip_forward

2 iptables

3 -t nat

4 -A PREROUTING

5 -p tcp

6 --dport 3306

1This is the easiest way, but not unconditionally necessary

Erik Sonnleitner Seite 13

3 Cryptographic appliances

7 -j DNAT

8 --to-destination <address of MySQL server >

9 iptables

10 -t nat

11 -A POSTROUTING

12 -p tcp

13 -d <address of MySQL server >

14 --dport 3306

15 -j MASQUERADE

The statement in line 1 just activates IP packet forwarding in the Linux kernel. The

second command activates traffic redirection from the OpenSSH server (where the

iptables rulebase is active) to the MySQL database server. Finally, with the third

command, we activate masquerading to ensure that responses of the MySQL server

are correctly translated and redirected to the calling host (e.g. the MySQL client).

3.2 Encrypting databases on filesystem level

As long as the MySQL server is up and running, and keeping track of incoming

queries to provide stored data, the database files have to be unencrypted and read-

able. It’s primarily the job of the DMBS, to only allow authorized users to read

and/or write data of certain tables.

Nevertheless, if a harddisk (including backups, tapes, etc.) gets stolen, the stored

data is world-readable from every external system. If needed, encryption can solve

this problem. Using encryption on filesystem level is quite easy in nowadays 2.6

Linux kernels. The following steps need to have losetup and cryptsetup installed

on the System, as well as a kernel which has been built with CONFIG_DM_CRYPT and

CONFIG_BLK_DEV_DM support (which most of the current kernels have). Most Unices

offer the use of encryption, but most of them are not platform independent. When

this is a criteria, Truecrypt2 may be a good choice.

MySQL stores its data in the $MYSQL_CHROOT/data directory, we will now encrypt.

We will proceed with the following steps:

1. We generate a file with completely randomized content, with the maximum

size of the MySQL storage tables (in the following example, 100MiB). If the

2www.truecrypt.org

Erik Sonnleitner Seite 14

4 Protection against stack-smashing attacks

reserved space points out to be too few, we can simply create a bigger one and

transfer the encrypted data later.

2. We create a new loopback-device, which is capable of handling our crypted

dataimage as harddisk partition.

3. We connect the loopback-device with a so called crypto-target, which encrypts

everything which is written onto the target, and decrypts everything which is

read from the target, as long as the crypto-target is enabled.

4. Format the crypted data container with a filesystem of our choice (ReiserFS

in this case).

5. Mount the crypted container, as it’s ready to use.

These steps are done via the following commands:

1 # dd if=/dev/urandom of=$MYSQL_CHROOT/data.crypt

2 # losetup /dev/loop0 $MYSQL_CHROOT/data.crypt

3 # cryptsetup -y create mysql_data /dev/loop0

4 Enter passphrase: Passphrase

5 Verify passphrase: Passphrase

6 # mkreiserfs /dev/mapper/mysql_data

7 # mount /dev/mapper/mysql_data $MYSQL_CHROOT/data

Now, before starting up the MySQL database server for everyday use, we have to

enforce step 2, 3 and 7. Detailed information about the theoretical backgrounds to

cryptography may be found in the wonderful reference of Bruce Schneier [Sch05], as

well as [Ert03] and [Wae03]. Information on practical filesystem encryption is found

in [Pac05].

4 Protection against stack-smashing attacks

Since MySQL has been written in C (and partly C++), the code is implicitly based

upon pointer arithmetics and therefore offers a broad spectrum of possible buffer-

overflow vulnerabilities. The most common form of buffer overlows are stack-based

smashing attacks, since they’re normally much easier to produce than heap-based

overflows.

Erik Sonnleitner Seite 15

4 Protection against stack-smashing attacks

Todays high-level programming languages like Java and C# follow a conceptional

hiding of pointers to the developer, which, spoken generally, leads to more secure

code since overflows nearly always sustain upon exploitable pointer structures. Nev-

ertheless I’m going to figure out some possibly insecure code-snippes of the current

MySQL version, before describing howto avoid attacks on them.

Here’s an outtake of mysql-5.0.45/libmysql/libmysql.c:693

1 my_bool STDCALL mysql_change_user(MYSQL *mysql , const char *user ,

2 const char *passwd , const char *db)

3 {

4 char buff [512] ,* end=buff;

5 int rc;

6 DBUG_ENTER("mysql_change_user");

7

8 if (!user)

9 user="";

10 if (! passwd)

11 passwd="";

12

13 /* Store user into the buffer */

14 end=strmov(end ,user)+1;

This code is always executed when the calling application intends to change the

current MySQL (DBMS-) user. Like shown in line 4, memory for a character buffer

buff is statically allocated with a size of 512 bytes. When strings have to be passed

to a function, C only passes pointers to the beginning of the string, which should

be terminated by a NULL-byte (000000002), to indicate where the string ends. The

function strmov at line 14, which does basically the same like ANSI strcpy, copies

the username (passed to mysql_change_user()) in the allocated buffer. However,

since the size of the corresponding username has never been checked to be less than

512 bytes, this code represents a classical stack-based buffer overflow.

Moreover, C doesn’t has a built-in exception management. If a function fails, is

in most cases only shown by the return value. Therefore, not checking the return

values of certain, possibly critical, and especially memory mapping functions can be

very dangerous and may lead to segmentation faults. The following piece of code

shows this (mysql-5.0.45/innobase/log/log0recv.c:3081):

1 log_dir_len = strlen(log_dir);

2 /* reserve space for log_dir , "ib_logfile" and a number */

Erik Sonnleitner Seite 16

4 Protection against stack-smashing attacks

3 name = memcpy(mem_alloc(log_dir_len + ((sizeof logfilename) + 11)),

4 log_dir , log_dir_len);

5 memcpy(name + log_dir_len , logfilename , sizeof logfilename);

This code is part of the InnoDB sources, which attempts to be an journaling ACID-

compatible database backend. The developer wants to put the log_dir string into

a newly created buffer called name. The memory allocation of name is done within

the memcpy call, and the return value is not checked against 0, which would indicate

that the memory allocation has failed. In such a situation, the MySQL database

server process will probably get killed by the System, since writing to unallocated

memory normally leads to a segmentation fault.

Protection Meanwhile, there are several ways to make C code more secure. One

attempt is libsafe, which has the advantage that existing programs doesn’t have to

be changed in any way. Libsafe is a library, that intercepts all system calls of the

Standard C Libaray, which are known to be insecure when not exactly checking

parameters, return values, etc. [BTS99]. However, it only checks against attacks,

meaning code or strings, trying to overwrite the return pointer of a function, which is

always pushed on the stack when calling; this is normally done to execute homebrewn

code, like opening a (root)-shell on the system. In that case, libsafe immediately

sends a SIGKILL signal to the program. This forces the shutdown of the database

server on the one hand, but protects against illegal code execution on the other

hand, which is definitly the less bad option.

Libsafe is a libary, which is used with the LD_PRELOAD functionality of POSIX sys-

tems, allowing to preload specific libraries, which may be called by a program,

and relink the call to other functions and/or libraries (which are defined in the

LD_PRELOAD environment variable). Simply install libsafe and force to set the envi-

ronment correctly:

1 # LD_PRELOAD=libsafe.so.1

2 # export LD_PRELOAD

Note that LD_PRELOAD does only take effect on dynamically linked executables. Be-

cause of this, it’s not capable of protecting statically linked binaries as shown in the

chroot-jail to make the operation easier.

More on buffer overflows and stack smashing can be found in the classical, ground-

breaking paper [One], as well as [Fos05] and [Eri03].

Erik Sonnleitner Seite 17

5 Security related configuration attributes

5 Security related configuration attributes

The my.cnf file may contain a rich set of possible configuration attributes and

values, which can change the behaviour of the MySQL server dramatically. The

whole file is basically split up into a couple of different sections, each describing the

configuration of a specific MySQL executable which is written within bracketes, e.g.

mysqld, mysqldump, client, etc. We will further focus on mysqld only. The whole

set of configuration attributes can be archieved in the MySQL sample configuration

files, usually found in $MYSQL/support-files/.

Connectivity Securing a database server strongly depends on what is expected

from the server. One of the most important questions is the need for remote ac-

cess to the service. If our database server is just needed by local services, we can

achieve a very effective security enhancement by disabling TCP/IP networking of

our MySQL instance. This is done by activating the skip-networking option. If

passed, connections are limited to either UNIX sockets or named pipes.

The max_connections defines the maximum of concurrent connections to the server.

Note that one of the given amount is always reserved for users with SUPER privi-

leges. Related to this, max_connect_errors defines the maximum of errors which

may result upon or during connection establishment per user, before he/she is being

banned. Setting this value to about 10 should prevent brute-force attacks.

Logging Turning on the log parameter, makes MySQL enable full query logging.

This means, that every MySQL query (even ones with incorrent syntax) is getting

logged. This is either good for debugging reasons on the one hand, and very inter-

esting on detecting certain database attacks like SQL-injections on the other hand.

Transactions and ACIDness transaction_isolation defines how MySQL is

reacting, if SELECT statements are queried upon possibly uncommitted rows and/or

tables (dirty read). From the security perspective, it’s advisable that this value is

set to REPEATABLE-READ or SERIALIZABLE, since both ensure ACID-compatiblity.

To guarantee ACID compliance, the instance of MySQL has to use a backend, sup-

porting transactions. This is normally done via the InnoDB engine, so it’s a good

idea to set default_table_type to InnoDB. The probably most important factor

due to the performance of this storing engine, is the innodb_buffer_pool_size,

Erik Sonnleitner Seite 18

6 Access control and privilege management

which caches indexes and row data of InnoDB tables. On a pure high-performance

database server, MySQL AB recommends to set this value up to 80% of the available

physical memory. In a maximum address-space of 4GiB on a 32 bit architecture,

this value may reach more than 3GiB of memory.

Others The MySQL syntax defines a LOAD DATA statement, which provids reading

files directly from the filesystem into a table. This command can be very useful for

certain administration tasks, but does offer a high potential of attacks. The use of

this statement can be prevented by setting load-infile to 0 in the configuration

file.

6 Access control and privilege management

6.1 General management table structures

MySQL has a built-in access control and privilege management, once more imple-

mented as a relational model in a separate database. Even after freshly installing a

database instance, MySQL automatically creates the mysql database which holds 6

tables – 5 of them play a certain role of wether a user is allowed to access database

objects (table, row, column, etc) or not. Those access rules may be built upon

username, connecting host or the requested database.

Erik Sonnleitner Seite 19

6 Access control and privilege management

The user table The user table is the most important one, since it (besides nu-

merous other things) defines users, their passwords, and the hosts they are allowed

to connect from, so are the first 3 columns. The host column also accepts wildcards,

like % as the regular expression (.*). The password is never stored in plain text,

but normally hashed via the MD5 algorithm. Note that a user/host-pair is used

as primary key.

After those initial values, the user table is followed by about two dozen boolean

values, giving a more granular description of the permissions granted to the user.

The names, like Insert_priv, Update_priv, etc. are self-speaking. Since those

rights have no restriction to certain tables or databases, they should be avoided and

set to N, whereever possible, for using more restricting levels of access.

When a query is being processed, the permissions of the user table are checked at

first, and the query is immediately granted if the user has sufficient permissions on

this layer. The following listing completes the available columns of the user table:

1 mysql > use mysql;
2 Database changed
3

4 mysql > desc user;
5 +-----------------------+----------------+------+-----+
6 | Field | Type | Null | Key |
7 +-----------------------+----------------+------+-----+

Erik Sonnleitner Seite 20

6 Access control and privilege management

8 | Host | char (60) | NO | PRI |
9 | User | char (16) | NO | PRI |

10 | Password | char (41) | NO | |
11 | Select_priv | enum(’N’,’Y’) | NO | |
12 | Insert_priv | enum(’N’,’Y’) | NO | |
13 | Update_priv | enum(’N’,’Y’) | NO | |
14 | Delete_priv | enum(’N’,’Y’) | NO | |
15 | Create_priv | enum(’N’,’Y’) | NO | |
16 | Drop_priv | enum(’N’,’Y’) | NO | |
17 | Reload_priv | enum(’N’,’Y’) | NO | |
18 | Shutdown_priv | enum(’N’,’Y’) | NO | |
19 | Process_priv | enum(’N’,’Y’) | NO | |
20 | File_priv | enum(’N’,’Y’) | NO | |
21 | Grant_priv | enum(’N’,’Y’) | NO | |
22 | References_priv | enum(’N’,’Y’) | NO | |
23 | Index_priv | enum(’N’,’Y’) | NO | |
24 | Alter_priv | enum(’N’,’Y’) | NO | |
25 | Show_db_priv | enum(’N’,’Y’) | NO | |
26 | Super_priv | enum(’N’,’Y’) | NO | |
27 | Create_tmp_table_priv | enum(’N’,’Y’) | NO | |
28 | Lock_tables_priv | enum(’N’,’Y’) | NO | |
29 | Execute_priv | enum(’N’,’Y’) | NO | |
30 | Repl_slave_priv | enum(’N’,’Y’) | NO | |
31 | Repl_client_priv | enum(’N’,’Y’) | NO | |
32 | Create_view_priv | enum(’N’,’Y’) | NO | |
33 | Show_view_priv | enum(’N’,’Y’) | NO | |
34 | Create_routine_priv | enum(’N’,’Y’) | NO | |
35 | Alter_routine_priv | enum(’N’,’Y’) | NO | |
36 | Create_user_priv | enum(’N’,’Y’) | NO | |
37 | ssl_type | enum(’’,’ANY’,’X509’,
38 ’SPECIFIED ’) | NO | |
39 | ssl_cipher | blob | NO |
40 | x509_issuer | blob | NO |
41 | x509_subject | blob | NO |
42 | max_questions | int (11) unsigned | NO |
43 | max_updates | int (11) unsigned | NO |
44 | max_connections | int (11) unsigned | NO |
45 | max_user_connections | int (11) unsigned | NO |
46 +-----------------------+------------------+------+
47 37 rows in set (0.01 sec)

As listed, user additionally defines four columns related to cryptographic methods

like ciphers and certificates, and four columns used for user-specific limitations on

the database, we will inspect later.

The db table The db table is checked (only), if the user table doesn’t define

enough permissions for a user to fully process the query. db again defines username,

Erik Sonnleitner Seite 21

6 Access control and privilege management

connecting host, and numerous privileges on a certain database, given by the column

Db. This table is only processed, if

1. the user doesn’t has sufficient permissions in the user table, and

2. the user wants to set up a query on a database, defined in the db table.

The host table This is basically the same as the db table, but acting on actual

hosts, the query may come from and may be restricted to.

The tables_priv and columns_priv table The tables_priv table exactly de-

fines the permissions of users on per-table-basis, who may or may not set up select,

insert, update, delete, create, drop, grant, references, index and alter commands.

Also the Grantor, the timestamp of the GRANT-statement and of course username,

database name and hostname are stored here. This is possibly the table where

user-based restrictions should be done.

In comparison, the columns_priv table is structured like tables_priv, but holds

less permissions and additionally defines a column_name column, telling us to which

column the restriction/permission is refering.

6.2 Access management via SQL

All permissions and restrictions stored in the mysql database, are classically man-

aged via SQL, mainly using GRANT and REVOKE statements.

A GRANT statement consists of the permissions which are to be set, as well as the

database and table it is refering to, and a user/hostname pair. For example:

1 GRANT SELECT , UPDATE on mysql.user TO root@localhost IDENTIFIED BY ’password ’

The REVOKE command is used adequatly. For a detailed description on GRANT and

REVOKE you may consider having a look on the official MySQL reference [Vas04].

There is no main difference between setting up permissions via the tables inside the

mysql database using DML or typing SQL GRANT and REVOKE statements. How-

ever, while the latter version will activate the permissions immediately, privilege

settings applied by direct DML, deserve reloading the values. This can be done via

FLUSH PRIVILEGES.

Erik Sonnleitner Seite 22

6 Access control and privilege management

There a several privileges only used for database administration, namely

• PROCESS, allowing the user to perform the processlist command,

• SHUTDOWN, allowing the user to shutdown the MySQL server via the shutdown

command,

• SUPER, allowing the user to perform the kill command for killing certain

MySQL threads,

• RELOAD, allowing the user to perform flush-hosts, flush-logs, flush-privileges,

flush-status, flush-tables, flush-threads, refresh as well as reload

commands.

Note, that these privileges are commonly not used via SQL-statements, but through

using the mysqladmin shell command. This is a security related model, since a user

who intends to force privilege escalation atempts on the MySQL server, will not

be able to use this commands inside the standard MySQL shell. The above rights

should be reduced to an absolute minimum of users.

6.3 Setting up connection limits

As shown in the table description of user, there are several options MySQL offers

to limit certain resources of specific users.

This includes three main clauses:

• The MAX_QUERIES_PER_HOUR clause defines a maximum set of queries which

may be processed on per user and per host basis. For example, the statement

GRANT SELECT on *.* TO root WITH MAX_QUERIES_PER_HOUR will limit the

maximum queries available to user root to an amount of five per hour.

• MAX_UPDATES_PER_HOUR, controls the maximum amount of DML statements

per hour, and

• MAX_CONNECTIONS_PER_HOUR controls the maximum of connection establish-

ments per hour.

All of those clauses cannot be applied on per-table or per-database basis, since they

have to be stated via *.*. Every mentioned limitation is internally represented by

Erik Sonnleitner Seite 23

7 Conclusion

counters, corresponding to the time (per hour). Those counter may easily be reset by

invoking the command FLUSH USER_RESOURCES (the user which tries to flush, will

need the RELOAD privilege). This statement will not remove the defined resource

limits, but reset the counters.

7 Conclusion

There is no absolute security for applications. The offered methods and technologies

mentioned in this paper, can help making the environment much more secure where

the MySQL daemon is running.

We may use technologies like sandboxing and virtualization for isolating the MySQL

processes from the environment, the database server is running in. This minimizes

the possible negative consequences, if the daemon is getting compromised.

The deployment and use of cryptographic routines for ciphering physical data and

network traffic, reduces the risks of sniffing and man-in-the-middle attacks, as well

as securing the whole data covered by the database if the data directory itself gets

theft.

A very big disadvantage of using programming languages which explicitely make use

of pointers like C or C++, is the possibility of buffer overflows and attacks using this

as basis. That’s not a conceptional mistake of MySQL, but makes the spectrum of

possible attacks much wider. Using certain external software for checking those leaks

is highly recommended. In such a case, the database server will just be terminated -

which is not a desirable consequence, but far better than having an up and running

but compromised instance.

Erik Sonnleitner Seite 24

References

References

[AB05] MySQL AB. Inside mysql 5.0 - a dba’s perspective, 2005.

[Ale06] Michael Alexander. Netzwerke und Netzwerksicherheit. Huehtig

Telekommunikation, 2006. (ISBN 3826650484).

[Amb07] Eric Amberg. Linux-Server mit Debian. mitp, 2007. (ISBN 3826615875).

[Bau02] Michael Bauer. Building secure servers with Linux. O’Reilly, 2002. (ISBN

0596002173).

[BLTR06] Johannes Bauer, Albrecht Liebscher, and Klaus Thielking-Riechert.

OpenVPN. Grundlagen, Konfiguration, Praxis. Dpunkt Verlag, 2006.

(ISBN 3898643964).

[BTS99] Arash Baratloo, Timothy Tsai, and Navjog Singh. libsafe manual page.

libsafe library, 1999.

[Cod70] E. F. Codd. A relational model of data for large shared data banks.

Communications of the ACM 13 (6), 377-387, 1970.

[Eri03] Jon Erickson. Hacking - the art of exploitation. No starch press, 2003.

(ISBN 1593270070).

[Ert03] Wolfgang Ertel. Angewandte Kryptographie. Hanser Fachbuchverlag,

2003. (ISBN 3446223045).

[Fos05] James Foster. Buffer overflow attacks. Syngres Media, 2005. (ISBN

1932266674).

[Gri05] Lenz Grimmer. Mysql backup and security, 2005.

[Kre04] Juergen Kreileder. Chrooting mysql on debian, 2004.

[MBBS07] Keith Murphy, Peter Brawley, Dan Buettner, and Baron Schwartz. Mysql

magazine, 2007. Issue 1.

[One] Aleph One. Smashing the stack for fun and profit. Phrack magazine vol

49, File 14 of 16.

[Pac05] Lars Packshies. Praktische Kryptographie unter Linux. Open source

press, 2005. (ISBN: 3937514066).

Erik Sonnleitner Seite 25

References

[PW07] Johannes Ploetner and Steffen Wendzel. Netzwerksicherheit. Galileo

press, 2007. (ISBN 3898428286).

[SBZD07] Henning Sprang, Timo Benk, Jaroslaw Zdrzalek, and Ralph Dehner.

Xen. Virtualisierung unter Linux. Open source press, 2007. (ISBN

3937514295).

[Sch05] Bruce Schneier. Angewandte Kryptographie. Algorithmen, Protokolle und

Sourcecode in C. Pearson Studium, 2005. (ISBN 0471117099).

[SR07] M. Stipcevic and B. Medved Rogina. Quantum random number genera-

tor. Rudjer Boskovic Institute, Bijenicka, Zagreb, Croata, 2007.

[SWF05] Ellen Siever, Aaron Weber, and Stephen Figgins. Linux in a nutshell.

O’Reilly, 2005. (ISBN 0596009305).

[Vas04] Vikram Vaswani. MySQL: The complete reference. Mcgraw-Hill Profes-

sional, 2004. (ISBN 0072224770).

[Wae03] Dietmar Waetjen. Kryptographie. Grundlagen, Algorithmen, Protokolle.

Spektrum Adakemischer Verlag, 2003. (ISBN 3827414318).

Erik Sonnleitner Seite 26

	Introduction
	Hardening the Unix environment
	Filesystem access restrictions and Access Control Lists
	Designing a chroot-jail
	Modern virtualization approaches

	Cryptographic appliances
	Encrypting network traffic
	Using OpenSSL
	Using OpenSSH

	Encrypting databases on filesystem level

	Protection against stack-smashing attacks
	Security related configuration attributes
	Access control and privilege management
	General management table structures
	Access management via SQL
	Setting up connection limits

	Conclusion
	References

